## Mark Scheme (Results) J anuary 2011

## GCE

## GCE Mechanics M3 (6679) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

J anuary 2011
Publications Code UA026583
All the material in this publication is copyright
© Edexcel Ltd 2011

## General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- Mmarks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol fwill be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
-     * The answer is printed on the paper
- $\square$ The second mark is dependent on gaining the first mark

J anuary 2011
Mechanics M3 6679
Mark Scheme

| Question <br> Number | Scheme | Marks |
| :--- | :--- | :--- |
| 1. | $v \frac{\mathrm{~d} v}{\mathrm{~d} x}=7-2 x$  <br> $\frac{1}{2} v^{2}=7 x-x^{2}(+c)$  <br> $x=0$ $v=6 \Rightarrow c=18$ | M1 |
|  | $v=0$ $x^{2}-7 x-18=0$ <br> $(x+2)(x-9)=0$  <br> $\therefore x=9$  | M1A1 |



| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 3. <br> (a) | $\begin{aligned} & \mathrm{Vol}=\pi \int_{1}^{2} y^{2} \mathrm{~d} x=\pi \int_{1}^{2} \mathrm{e}^{2 x} \mathrm{~d} x \\ & =\frac{1}{2} \pi\left[\mathrm{e}^{2 \mathrm{x}}\right]_{1}^{2} \\ & =\frac{1}{2} \pi\left[\mathrm{e}^{4}-\mathrm{e}^{2}\right] \end{aligned}$ | M1 <br> M1 A1 <br> A1 <br> (4) |
| (b) | $\begin{aligned} & \text { C of } \mathrm{M}=\frac{\int_{1}^{2} \pi y^{2} x \mathrm{~d} x}{\mathrm{vol}} \\ & \int_{1}^{2} \mathrm{e}^{2 x} x \mathrm{~d} x=\left[\frac{1}{2} x \mathrm{e}^{2 x}\right]_{1}^{2}-\int_{1}^{2} \frac{1}{2} \mathrm{e}^{2 x} \mathrm{~d} x \\ & =\left[\frac{1}{2} x \mathrm{e}^{2 x}\right]_{1}^{2}-\left[\frac{1}{4} \mathrm{e}^{2 x}\right]_{1}^{2} \\ & =\frac{1}{2} \times 2 \mathrm{e}^{4}-\frac{1}{2} \times 1 \mathrm{e}^{2}-\left(\frac{1}{4} \mathrm{e}^{4}-\frac{1}{4} \mathrm{e}^{2}\right) \\ & =\left(\frac{3}{4} \mathrm{e}^{4}-\frac{1}{4} \mathrm{e}^{2}\right) \\ & \mathrm{C} \text { of } \mathrm{M}=\frac{\pi\left(\frac{3}{4} \mathrm{e}^{4}-\frac{1}{4} \mathrm{e}^{2}\right)}{\frac{1}{2} \pi\left(\mathrm{e}^{4}-\mathrm{e}^{2}\right)}=1.656 \ldots \\ & =1.66 \\ & (3 \text { sf }) \end{aligned}$ | M1 A1 <br> M1 <br> A1 <br> M1 A1 |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 4. <br> (a) | $\begin{aligned} & x=5 \sin \left(\frac{\pi t}{3}\right) \\ & \dot{x}=5 \times \frac{\pi}{3} \cos \left(\frac{\pi t}{3}\right) \\ & \ddot{x}=-5 \times\left(\frac{\pi}{3}\right)^{2} \sin \left(\frac{\pi t}{3}\right) \\ & \ddot{x}=-\frac{\pi^{2}}{9} x \quad(\therefore \text { S.H.M. }) \end{aligned}$ | M1A1 <br> A1 (3) |
| (b) | $\begin{aligned} & \text { period }=\frac{2 \pi}{\frac{\pi}{3}}=6 \\ & \text { amplitude }=5 \end{aligned}$ | B1 <br> B1 <br> (2) |
| (c) | $\begin{aligned} & \ldots=5 \times \frac{\pi}{3} \cos \left(\frac{\pi t}{3}\right) \quad \text { or }\left\|v_{\max }\right\|=a \omega \\ & \max . v=\frac{5 \pi}{3} \end{aligned}$ | M1 A1 <br> (2) |
| (d) | At $A x=2 \quad 2=5 \sin \left(\frac{\pi t}{3}\right)$ $\begin{aligned} & \sin \frac{\pi}{3} t=0.4 \\ & t_{A}=\frac{3}{\pi} \times \sin ^{-1} 0.4 \end{aligned}$ <br> At $B \quad x=3 \quad t_{B}=\frac{3}{\pi} \times \sin ^{-1} 0.6$ <br> time $A \rightarrow B=\frac{3}{\pi} \times \sin ^{-1} 0.6-\frac{3}{\pi} \times \sin ^{-1} 0.4$ <br> $=0.2215 \ldots=0.22 \mathrm{~s}$ accept awrt 0.22 | M1 <br> A1 <br> A1 <br> A1 <br> (4) <br> [11] |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 5. <br> (a) | $\begin{align*} & r=\frac{l}{\sqrt{ } 2} \\ & \mathrm{R}(\uparrow) \quad T_{a} \cos 45=T_{b} \cos 45+m g \\ & T_{a}-T_{b}=m g \sqrt{ } 2  \tag{1}\\ & \mathrm{R}(\rightarrow) \quad T_{a} \cos 45+T_{b} \cos 45=m r \omega^{2} \\ & T_{a} \times \frac{1}{\sqrt{ } 2}+T_{b} \times \frac{1}{\sqrt{ } 2}=m \frac{l}{\sqrt{ } 2} \omega^{2} \\ & T_{a}+T_{b}=m l \omega^{2}  \tag{2}\\ & T_{a}-T_{b}=m g \sqrt{ } 2  \tag{1}\\ & 2 T_{a}=m\left(l \omega^{2}+g \sqrt{ } 2\right) \\ & T_{a}=\frac{1}{2} m\left(l \omega^{2}+g \sqrt{ } 2\right) \\ & T_{b}=m l \omega^{2}-T_{a} \\ & =\frac{1}{2} m\left(l \omega^{2}-g \sqrt{ } 2\right) \end{align*}$ | B1 <br> M1A1 <br> M1A1 <br> M1 <br> A1 <br> A1 |
| (b) | $\begin{aligned} & T_{b}>0 \quad \frac{1}{2} m\left(l \omega^{2}-g \sqrt{ } 2\right)>0 \\ & \omega^{2}>\frac{g \sqrt{ } 2}{l} \quad * \end{aligned}$ | M1 A1 |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| $6 .$ <br> (a) |  | B1 <br> M1A1 <br> M1A1 <br> A1 <br> A1 <br> (7) |
| (b) | $\begin{aligned} & \text { initial extn }=\frac{13}{5} l-l=\frac{8}{5} l \\ & \text { E.P.E. lost }=2 \times \frac{\lambda x^{2}}{2 l}=2 \times \frac{10 m g}{2 l}\left(\frac{8 l}{5}\right)^{2}=\frac{128 m g l}{5} \\ & \text { P.E. gained }=3 m g \times \frac{12 l}{5}=\frac{36 m g l}{5} \\ & \frac{1}{2} \times 3 m v^{2}+\frac{36 m g l}{5}=\frac{128 m g l}{5} \\ & v^{2}=\frac{256 g l}{15}-\frac{72 g l}{15} \\ & v=\sqrt{ }\left(\frac{184}{15} g l\right) \end{aligned}$ | B1 <br> M1A1 <br> M1A1 <br> A1 <br> (6) <br> [13] |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 7. |  $\begin{aligned} & m g l(\cos \alpha-\cos \theta)=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2} \\ & v^{2}=u^{2}+2 g l(\cos \alpha-\cos \theta) \end{aligned}$ | $\mathrm{M} 1 \mathrm{Al}=\mathrm{Al}$ <br> A1 |
| (b) | $\begin{aligned} & \cos \alpha=\frac{3}{5} \quad v^{2}=2 g l\left(\frac{3}{5}-\cos \theta\right)+u^{2} \\ & \text { At top } \theta=360^{\circ} \quad v^{2}=2 g l\left(\frac{3}{5}-1\right)+u^{2} \\ & v^{2}>0 \quad-2 g l \times \frac{2}{5}+u^{2}>0 \\ & u^{2}>\frac{4 g l}{5} \\ & u>2 \sqrt{\frac{g l}{5}} \quad * \end{aligned}$ | M1A1 <br> M1 <br> A1 <br> (4) |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| (c) | Equation of motion along radius at lowest point: $\begin{aligned} & T_{1}-m g=\frac{m v^{2}}{l} \\ & \theta=180 \quad v^{2}=2 g l\left(\frac{3}{5}+1\right)+u^{2} \\ & v^{2}=\frac{16 g l}{5}+u^{2} \\ & T_{1}=\frac{m}{l}\left(\frac{16 g l}{5}+u^{2}\right)+m g \\ & =\frac{21 m g}{5}+\frac{m u^{2}}{l} \end{aligned}$ <br> At highest point: $\begin{aligned} & T_{2}+m g=\frac{m v^{2}}{l} \\ & \theta=360 \quad T_{2}=2 m g\left(-\frac{2}{5}\right)+\frac{m u^{2}}{l}-m g \\ & T_{2}=\frac{m u^{2}}{l}-\frac{9 m g}{5} \\ & T_{1}=5 T_{2} \\ & \frac{21 m g}{5}+\frac{m u^{2}}{l}=5\left(\frac{m u^{2}}{l}-\frac{9 m g}{5}\right) \\ & \frac{66 m g}{5}=\frac{4 m u^{2}}{l} \\ & u^{2}=\frac{33 g l}{10} \quad * \end{aligned}$ | M1A1 <br> M1 <br> A1 <br> M1 <br> M1 <br> A1 <br> M1 <br> A1 |

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA026583 J anuary 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

